A Convergent Finite Difference Scheme for the Camassa-Holm Equation with General H1 Initial Data
نویسندگان
چکیده
We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.
منابع مشابه
A Convergent Finite Difference Scheme for the Camassa-holm Equation with General H Initial Data
We suggest a finite dfference scheme for the Camassa-Holm equation that can handle general H1 initial data. The form of the difference scheme is judiciously chosen to ensure that it satisfies a total energy inequality. We prove that the difference scheme converges strongly in H1 towards an exact dissipative weak solution of Camassa-Holm equation.
متن کاملAn Explicit Finite Difference Scheme for the Camassa-holm Equation
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H1 initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H1 towards a dissipative weak solution of C...
متن کاملConvergence of a Finite Difference Scheme for the Camassa-Holm Equation
We prove that a certain finite difference scheme converges to the weak solution of the Cauchy problem on a finite interval with periodic boundary conditions for the Camassa– Holm equation ut−uxxt +3uux−2uxuxx−uuxxx = 0 with initial data u|t=0 = u0 ∈ H1([0, 1]). Here it is assumed that u0 − u′′ 0 ≥ 0 and in this case, the solution is unique, globally defined, and energy preserving.
متن کاملA Convergent Numerical Scheme for the Camassa–holm Equation Based on Multipeakons
The Camassa–Holm equation ut−uxxt+3uux−2uxuxx−uuxxx = 0 enjoys special solutions of the form u(x, t) = Pn i=1 pi(t)e −|x−qi(t)|, denoted multipeakons, that interact in a way similar to that of solitons. We show that given initial data u|t=0 = u0 in H1(R) such that u − uxx is a positive Radon measure, one can construct a sequence of multipeakons that converges in Lloc(R, H1 loc(R)) to the unique...
متن کاملar X iv : 0 80 2 . 31 29 v 1 [ m at h . A P ] 2 1 Fe b 20 08 AN EXPLICIT FINITE DIFFERENCE SCHEME FOR THE CAMASSA - HOLM EQUATION
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H towards a dissipative weak solution of Cam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 46 شماره
صفحات -
تاریخ انتشار 2008